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Abstract

A programming language can provide much better support for interprocess communica-
tion than a library package can. Most message-passing languages limit this support io
communication between the pieces of a single program, but this need not be the case.
Lynx facilitates convenient, typesafc message passing not only within applications, but
also between applications, and among distributed collections of servers. Specifically, it
addresses issues of compiler statelessness, late binding, and protection that allow run-
time interaction between processes that were developed independently and that do not
trust each other. Implementation experience with Lynx has yielded important insights
into the relationship between distributed operating sysiems and language run-time sup-
port packages, and into the inherent costs of high-level message-passing semantics.

—_—
. . . »
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1. Introduction

A programming language has clear advantages over a librar, = .ckage for communication between

processes in a distributed environment.! These advantages include non-procedural syntax, direct use of
program variables and types, type checking, exception handling, and support for concurrent conversations.
Unfortunately, most existing distributed languages are better suited to communication between the
processes of a single application than they are to communication between processes that are developed
independently. Such independent development is characteristic both of the systems software for multicom-
puters and of the applications software for geographically-distributed networks. Lynx [19,21] is a
message-passing language designed to support both application and system software in a single conceptual
framework. It extends thc advantages of language-based communication to processes designed in isola-
tion, and compiled and placed in operation without knowledge of their peers.

Lynx was developed at the University of Wisconsin, where it was first implemented on the Charlotte
multicomputer operating system [2,11). Charlotte was designed without Lynx, but experience with a con-
ventional library interface o the kernel suggested thai language support for communication could make the

! Throughout this paper, the term “*process'’ is used to denote a heavyweight entity with its own address space,
supported by the operaling system. Active entities in the same address space will be called lightweight threads of
control.
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programmer’s hife much casier. Parucularly troublesome was the construction of operating svstem server
processes, which needed 1o communicate conveniently, safely, and efficiently with an ever-changing pool
of chents, most of whom could be expected 10 have been wnuen long after the server was placed in opera-
uon. Lynx was designed to provide an unusually high degree of support for dynamic changes in intercon-
nection topology, protecton from. untrusted processes, and concurrent, interleaved conversauons with an
arbitrary number of communication partners. To permit the construction of servers, Lynx was designed to
provide these benefits without depending on any sort of global information at compile time.

The Lynx compiler is a pure translator: it requires no input other than a source program and producés
no output other than an object program. In particular, it does not depend on a database of type definitions
or interface descriptions in order to guarantee the validity of messages. A novel application of hash-
ing "22] provides efficient run-time type checking on messages at negligible cost and at a very high leve] of
confidence.

Within the context of independent compilation, Lynx supports reconfiguration and protection with a
virtuai-circuit abstracuon called the link. It maintains context for multiple conversations by combining
message passing with the scheduling of hightweight threads of control. A link is a symmetric two-
directional channgl, hke a pair of un cans connected by string. The cans themselves (link ends) are firsi-
class objects that can be created, deswroyed, stored in data structures, and passed in messages. It is by pass-
ing them in messages that the process connection graph is changed. Threads are a program structuring ool
that allows a sequential execution path to be associated with each logically separate conversation. A file
server, for example might have a separate thread of control for each of its open files. Each thread could
then use straight-line code to perform operations on behalf of a client. Special operations (seeks, for exam-
ple) could be performed by nested threads that share file-specific data structures. Lynx allows these threads
to be created automatically. in response to incoming requests.

In addition to systems software, Lynx has been used to implement a number of paraliel and distrib-
uted applications. At the University of Rochester, the compiler has been ported to the BBN Butterfly mul-
tiprocessor and its Chrysalis operating system. Experience with the two implementations, together with
paper designs for two others, has led to important insights into the relationship between a language run-
time package and the underlying operating system [19]. A detailed performance study of the Chrysalis
implementation has helped to provide a deeper understanding of the inherent costs of message-passing sys-
tems [21].

2. Motivation

2.1. Message-Passing Languages

An operating system that allows processes in separate address spaces to communicate outside the file
system will generally provide kemel calls for messags passing. User programs wili access these calls
through a traditional subroutine library. Experience with a wide variety of message-passing systems, how-
ever, suggests that users find this sort of traditional interface inadequate. The crux of the problem is that
interprocess communication is significantly more complicated, from the user’s point of view, than are other
kemel services.




Strucuured Informauon

Like file system read and wrnite operations. library-based communication primitives generally ransfer
uninterpreted streams of bytes. The desire to impose structure on those byvtes has often been a
motivauon for language-level file svsiem interfaces, and that motivation applies even more srongly
to messages. Programmers want to be able 10 send and receive program variables by name, includ-
ing those with structured and abstract types, without sacrificing type checking and without explicitly
packing and unpacking bufiers.

Error Handling and Protection

Interprocess communicauon 1s more error-prone than other kemel operauons. Both hardware and
software may fail. Software is a particular problem, since processes that are not part of the same
application cannot in general trust each other. Compared to an open file, a connection (o an arbitrary
process can display vastly less predictable behavior. Fault-tolerant algonithms may allow a process
1o recover from many kinds of detectable failures, but it can be awkward to deal with those errors in
ling by examining kernel call return codes.

Concurrent Conversations

While a convenuonal sequential program rarely has anything interesting to do while waiting for a
kernel call to complete, a process in a distributed environment is much more likely to be budgeting
its ume among multiple activities. A server, for example, may be working on behalf of multiple
clierts at once. It cannot afford to be blocked while waiting for a particular client to respond. The
kernel can help by providing non-blocking sends and receives, but then the server begins to resemble
a state machine more than it resembles straight-line code. The inevitable interleaving of separate
conversations leads to very obscure programs.

A language-based approach to communication can improve the sttuation significantly.

(H
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Communication statements in a language can make direct use of program variables and eliminate the
need to think about message buffers. The compiler can generate code to gather variables 1o be sent
inw a buffer acceptable to the operating system. At the message’s destination the compiler can
arrange to scatter the contents of the buffer into appropriate variables in the receiving process. Since
the compiler knows the types of all the values involved, it can take steps to ensure that the sender and
receiver agree on an interpretation for the bytes contained in the message.

If the programming language includes facilities for exception handling, many of the errors that may
occur during communication can be passed to exception handlers outside the normal flow of control.
A single exception handler can protect a large number of communication statements. Cenain kinds
of errors may even be handled in the run-time support package, without ever becoming visible to the
programmer.

If the programming language includes facilities for concurrency, separate conversations may be han-
died by separate threads of control. The run-time support package can be designed to include a
dispatcher routine that examines each incoming message and makes it available to the appropriate
thread.

Each of these numbered points corresponds directly to one of the problems with library-based com-

munication. In addition, a language-based approach 10 communication can offer specialized syntax and




can arrange for useful side-effects to communication statements. It would be difficult, for example, to pro-
vide the funcuonahiy of an Ada selecr statement [27] without its distinctive syntax. A less widely appreci-
ated feature of Ada is its carefullv-designed semantics for data sharing between tasks. The language refer-
ence manual requires a ‘‘shared”’ variable 1o have a single, consisient value only at the times when 1asks
exchange iessag2s. An Ada implementation can choose 0 replicate variables at muluple sites and can
allow the copies 10 acquire inconsistent values, so long as it reconciles the differences before the program-
mer can detect them — i.e. before the vanables can be compared {o a value in a message. In & similar
vein, the compiler for NIL [24] tra. ks the status of every program variable and treats a vaniable that has
just been sent in a message as if it were uninitialized. This facility allows the run-ume system to imple-
ment message passing on a shared-memory machine by moving pointers, without worrying that a sender
will subsequently modify the variables it has “‘sent.”” In Argus [15], one can send messages between
processes that use completely different implementations of a common abstract type. The compiler inserts
code in the sender to translate data into a universal, machine-independent format. It inserts code in the
receiver to translate that data back into an appropriate local version of the abstraction.

The advantages of language-level communication can be realized either by designing a language
from scrawch or by augmentng an existing language. The latter approach is typified by remote procedure
call stub generators. A stub generator is a program that translates a set of declarations for remote opera-
tions into ordinary procedures, which can be called from a conventional language, and which hide the
details of the underlying message passing. Though a stub generator cannot provide non-procedural syntax
or fancy side ettects, it can eliminate most of the immediate problems with straightforward use of a kernel
call library. By processing the user’s declarations it can provide type checking and automatic
scatter/gather of message parameters. In conjunction with a language that includes exception handling, it
can eliminate most of the complexity of examining kernel call return codes. If the language includes con-
currency, 1t may even be possible to write a dispatcher that automatically routes incoming messages to the

threads of control that want them.? One of the most successful stub gencrators can be found in the Cedar
environmecnt at Xerox PARC [3].

2.2. Inter-Program Communication

The bulk of the distributed language literature focuses on the needs of distributed programs — col-
lections of processes that are designed to work together and that constitute the pieces of a single, coherent
whole. There are equally important scenarios, however, in which communication must occur between
processes that were developed independently. Distributed systems software provides one class of exam-
ples. Large-scale distributed applications provide another.

The past decade and a half has seen the development of a large number of distributed operating sys-
tems. The typical goal of such systems is make a collection of locally-distributed computers appear 1o
work like a single machine. In the interests of minimal kernel size, configurability, and easy modification,
many of the traditional functions of a monolithic operating sysiem are placed outside the kemel in a

2To support a dispalcher, the conicuitency mechanism must be designed in such a way that a particular thread can
be made runnable explicitly. Languages that provide a static number of synchronization conditions (as, for example, in
Modula-1 [29]) are not well suited to this purpose.
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distributed operaung svstem. In Charloute, for example, user-level code is used to implement a process and
memory manager (the starter), a command interpreter, a process connection facility, two kinds of file
servers, a name server (the switchboard), and a terminal driver. The communication acuvity of these
processes is at least as complicated, and ofien more complicated, than that of any single user application.

From the user’s point of view, the presense of servers means that even the most self-contained of
programs is likely 10 need 1o communicate occasionally with an independently-developed process about
which it knows very hule. Language support can make this communication much more convenient and
safe, particularly if 1t matches the style of communication used within the program. In fact, the more one
moves away from the centralized model of a traditional operating system and toward a distributed collec-
tion of servers, the harder it becomes to draw the line between one program and the next.

Consider a large-scale application that spans a geographically distributed collection of machines. An
airling reservation system is an obvious example. It is possible to conceive of such an application as a sin-
gle distributed program, but the concept wears thin when one considers the large number of institutions
involved. 11 1s one thing 10 talk about a program developed by a single organization (the airline, say) and
running on machines owned and operated by that organization. It is quite another to talk about a program
that has picces under the control of a thousand different travel agencies, possibly written in different
languages and running on different types of hardware. If we consider the subject of automatic teller
machines and the electronic transfer of funds between competing, autonomous banks, the concept of a sin-
gle distributed program breaks down altogether. As internets proliferaie, the software required for network
management and routing is also developing into a multi-program distributed application. Further examples
can be found in the Defense Department’s need for global information gathering and communication, and
in similar applications in weather forecasting and ground control for spacecraft.

2.3. Special Language Needs

When compared to a multi-process program, the pieces of a multi-program application have unusu-
ally stringent needs for compile- and run-time flexibility, protection, and conversation management.

Flexibility

Operating system server processes must be able to communicate with clients that did not even exist
when the server was designed. The obvious way to perform type checking for this communication is create
for each server an interface description that can be used when constructing clients. Unfortunately, main-
taining a consistent set of interface descriptions across distributed sites becomes a non-trivial database
management problem as soon as there is a significant number of servers or sites. If the compiler insists that
a client be compiled with exactly the same set of declarations that were used to compile the server (this
amounts to Insisting on name equivalence for types [12, pp. 134-136)), then the database problem becomes
particularly severe: it requires unforgable version numbers that change when the data changes but not
when it is copied.

Upward compatibility is also a problem. If a new comment is added to the interface description for
the file server, we will certainly want to avoid recompiling every process that uses files. If a new routine is
added without changing the behavior of the rest of the interface, we should also avoid recompilation. If
changes are made 1o certain routines but not to others, we should recompile only those processes whose




behavior would otherwise be incorrect. It 1s possible 10 bulld a compiler that incorporates a formal nouon
of upward compatibility {26}, but the sk 1s not a simple one, even in the absence of multiple sites. Lynx
addresses the problem by checking siructural type equivalence, at run time, for each individual message:
no central database of types is needed, and upward-compatible programs run without recompilation.

Servers must frequently change their interconnection topology at run time. To faciliate changes,
Lynx makes the message channel between processes an explicit first-class object, the link, and provides
variables that name a hink. A link can be used to represent an abstract resource that is distinct from both
the process(es) that implement 1t and the operations 1t provides. Examples of resources include a file, a
bibliographic database, a print spooler, and a process creation facility.

Most other languages that allow connections to be reconfigured use variables that name processes or
remolte operations. The problem with naming processes is that a resource may be provided by a collection
of processes: a distnbuted server may prefer that a user communicate with different constituent processes
at different umes, in order to balance workload or minimize communication costs. If users address their
messages to processes the server cannot effect topology changes without informing the user, a violation of
abstraction. The problem with naming remote operations is that a resource may provide different sets of
opcrauons to difterent clients, or at different points in ime. Even with facilities for bundling related opera-
tions (such as the resource capabilities of SR [1]), the nature of each abstraction must be known to every
client; servers cannot change the set of available operations to reflect changes in the state of the abstraction
or to implement access control. If the resource is passed among clients, the desire for information hiding
suggests that each chient should be aware of only the operations it needs.

Since type checking is performed on messages in Lynx, connections between processes can be mani-
pulated without knowing the types of messages that links may eventually carry. Name servers and other
interconnection utilitics can establish connections between processes whose message interfaces were
created long after the servers were placed in operation. In a language with typed connections (particular
onc such as Ada. which addresses messages to operations} one cannot write a name server capable of regis-
tering clients that use newly-created message types.

Protection

Pieces of a mulu-program application cannot afford to trust each other. Even if malice is not an
issue (as a result, let us say, of external administrative measures), a healthy respect for the principles of
software engineering dictates that each process be able to recover from arbitrary errors on the par of its
communication partners. The easiest way to provide such protection from external errors is probably to
incorporate message passing into a general-purpose exception-handling mechanism, with a built-in excep-
tion for each type of system-detectable error. It will always be possible, of course, for a process to send
messages with incorrect data, but no language could prevent it from doing so. The types of errors that must
be propagated up to the user are such language- and system-defined events as type clashes (with run-time
type checking), use of an incorrect address, termination of a communication partner, or failure of a p.~ces-
sor or channel.

On a more fundamental level, communication facilities for mutually suspicious processes must be
designed in such a way that each process can exercise control over whom it talks to when. A server, for
example, must be able to specify not only the clicnts to whom it wishes to send messages, but also the




chents from whom 1t 18 willing to recene. Even af 1t is willing to receive messages from anywhere, a
server 1< still hikely 1o need to differentiate between chents 1n order 1o provide them with differing levels of
servive or eatend to them differing levels of rust. Few exisung languages provide a receiver with thins sont

of expressive power.

Conversation Management

In a language with muluple threads of conuol. the concurrency between threads can be used for two
quite different purposes. It can serve to express true paralielism, for the sake of enhanced performance, or
1L can serve as a program structuning tool to simplify the exposition of certain kinds of algorithms. In a
server process the latter purpose may be particularly important; it captures the existence of independent,
partially-completed conversations with multiple clients. Unless servers are expected to run on multi-
processor hardware, the goal of running threads in parallel may not be important at all. It is of course
attractive to have a lightweight thread mechanism that addresses both goals at once, but it introduces the
need for fine-grained synchronization on data that is shared between threads. In a monitor-based language
with a stub generator (Cedar [25) for example), the programmer must keep track of two very difterent
forms of synchronization: monitors shared by threads in the same address space and remote procedure
calls between threads in different address spaces. Dissaus{action with a similar approach in Washington's
Eden project (5] was a principal motivation for the development of the Emerald lar.guage (4]. Emerald
provides an object-oriented model that eliminates the distinction between local and remote invocations, but
1t sull requires monitors to synchronize concurrent invocations within a single object. In SR [1], an alterna-
tive approach to unifying remote and local invocations allows a single style of synchroniration to be used
in all situations.

No matter how elegant the synchronization mechanism, however, its use is still a burden w0 the pro-
grammer. In an implementation without true paralichsm, pseudo-concurrent semantics for threads create
the appearance of race conditions that should not even exist. They force the use of explicit synchronization

on even the most simple operations.® An alternative approach adopted in Lynx, is to abandon the possibil-
ity of true parallelism within processes in favor of simpler semantics. Threads in Lynx, like coroutines, run
unti! they block. They are purely a program structuring tool.

In either case, whether threads are said to run in parallel or not, a process that is communicating with
several peers at once can benefit remendously from a careful integration of thread management with the
facilities for passing messages. If each conversation with a client is 1o be represented by a separate thread
of control, a server may wish to arrange for new threads to be created automatically in response 10 certain
kinds of incoming messages. Such implicit receipt of messages by a newly created thread is characteristic
of concurrent languages with stub generators, and is also found in Argus, Emerald, and SR. In Lynx it is
extended to permit the creation of threads in a nested lexical context, so that related threads can share state.
In a language with coroutine-like threads, remote procedure calls and other blocking communication state-
ments can produce an automatic coroutine transfer to znother, runnable thread.

?To increment a shared variable. for example, a pseudo-concurrent thread need not worry about atomicity. It can
assume that a context switch will not occur between its read and write. If we pretend that threads are truly parallel,
then the program will not be “*correct’’ unless we write code to specify that the physically atomic increment operation
should also be semantically atomic.




3. Language Design

3.1. Links

Processes in Lyny are assumed 10 be independent and autonomous. Each process 1s separately com-
piled. At run ume. processes communicate only by sending messages to each other over two-directional
communication channcls called links. Each process begins with an inital set of arguments, presumably
contaiming at least one link to connect it 1o the rest of the world. Each link has a single process at each end.
As an example of a simple applicauon, consider a producer process that creates data of some type and
sends that data to a consumer. Each process begins with a link o the other. The producer looks like this:

process producer (coensumer @ LiInkK)
Tvre Zztz = whnatltever
ertry Trarcier (irnfo dat:); remote
furciLIn o proicce Zz%a;
cex:
-~ whitewver
ernd produce
begir -~ procucer
loop
connect transfer (produce [) on consumer;
end;

end prcducer.

The word “‘entry’’ introduces a template for a remote operation. The general syntax is

entry cprame ( request_parameters ) : repl)_parameler_lypes ;
In this casc, the transfer entry has no reply parameters.

An entry header can be followed by a body of code, or by the word ‘‘remote.”” In our case, we have
used the latter option because the code for transfer is in another process. Like the word ‘‘forward’’ in Pas-

cal. *“‘remote’” can also indicate that the code will appear later in the current process, either as a repeated
entry declaration or as the body of an accepr statement, as in the consumer below.

The connect statement is used to request a remote operation. The vertical bar in the argument list
separates request and reply parameters.

connect opname ( expr_list | var_list ) on linkname ;

The current thread of control in the sending process is blocked until a reply message is received, even if the
list of reply parameters is empty. Our producer has only one thread of control (more complicated examples
appear below), so in this case the process as a whole is blocked.

The consumer looks like this:

process consumer (producer : link);

type data = whatever;

entry transfer (info : data); remc:e;




accert wransfer (vuffer) on producer; reply;
ccnsume (buffer);
enz
erd consumer

The accept statement 1s used to provide an operation requested by the process at the other end of a
link. In our example, the producer uses a connect statement to request a transfer operation over its link to
the consumer, and the consumer uses an accept statement to provide this operation.

accert opname { var_list ) on linkname ;

repiy ( expr_lhst )

The reply clause at the end of the accept statement returns its marameters to the process at the other end of
linkname and unblocks the thread of control that requested the operation opname. The parameter types for
oprame must be defined by an entry declaration. Arbitrary statements can appear inside an accept state-
ment, including nested accepts. In our example, the consumer has nothing it needs to do before replying.

A link can be thought of as a resource. In our example neither the consumer nor the producer can
namg the other directly. Each refers only to the link that connects them. The consumer, having received
all the data it wants, might pass its end of the link on o another process. Future transfer operations would
be provided by the new consumer. The producer would never know that anything had happened.

A variable of type link rcally identifies a link end. Link ends are created in pairs, by a built-in rou-
tine called newlink. Our producer/consumer pair could be creat>d with the following sequence of state-
ments:

var L : link;

begin

startprocess (“"consumer”, newlink (L)),

startprocess ('"producer", L};

To make it easy to write sequences of code such as this one, newlink returns one of the link ends as its
function value (here passed on immediately to the consumer) and the other through a reference parameter
(here saved temporarily in L so that it can be passed to the producer in the second call to startprocess).

Since messages are addressed to links, not processes, it is not even necessary 10 connect the producer
and consumer directly. An extra process could be interposed for the purpose of filtering or buffering the
data. Neither the producer nor the consumer would know of the intermediary’s existence.
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startprocess ('"consumer", newlink (1));
startprocess ("buffer"™, L, newlink (¥));
steriprocess ("prcauvcer', M,

Code for a bufter process appears in section 3.4.

To move a link end. a process need only enclose it in a message (via connect, accept, reply, or start-
process). Once the message i< received, the sending process can no longer use the transferred link, but the
receiving process can. The compiler provides the run-time system with enough information about types
that this transfer 1s guaranteed to work for messages containing arbitrary data structures (including variant
records) that might have links inside.

A link between a server and a client can be passed on to a new client when the first one doesn’t need
itany more. It can also be passed on to a new server (functionally equivalent to the old one, presumably)
in order to balance work load or otherwise improve performance. In a large distributed environment, many
servers are likely o be implemented by collections of processes. These processes may move their end of a
chient hink frequenty. in order to connect the chent to the member of their group best able 10 serve its
requests at a particular point in time.

One common use of link movement is o implement a nare server process that maintains a database
of server names and links. Clients in need of a particular service can ask the name server for a link on
which to request that service (see box, p. 11).

3.2. Implicit Receipt

In our producer/consumer example, each process contains a single thread of control. In the consu-
mer, this thread accepts its transfer requests explicitly. It is also possible to accept requests implicitly, and
the choice between the two approaches depends largely on whether we view the consumer as an active or a
passive enuty.

If we think of the producer and consumer as active peers, then it make. .2nse for the consumer o
contain a thread that *‘deliberately
the concusier as a server (a spooler for a printer, perhaps), then we will most likely want to write a more

1 X

waits for data from the producer. If we choose, however, 10 think of

passive version of the coue — one that is driven from outside by the availability of data. Since a demand-
driven spooletr . aely to have multiple clients, it also makes sense 10 give each incoming request to a
separate L. + .ongol, and to create those threads automatically. Our consumer can be re-written to
use implicic.eceipt as follows:

process - sumer (producer : link);
type data = whatever;

procedure consume (info : data);
begir
-- whatever

end consume;
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Link Movement

There are many reasons to change the connections between processes at run time. Cenainly a
newlyv-created process must be connected to existing processes that can provide it with input and output. In
a single. large application, it is also common for computation to move through a series of distinct phases,
each of which requires a different set of processes and connections. In a robust, geographically distributed
system, a process that 1s unable 10 obtain a service from its usual source (because of hardware failures, for
example, or overloaded communication lines) may wish to connect (o an alternative server. In the example
below we sce a nrocess (called the switchboard) whose job it is 1o keep a registry of servers who are
willing 10 accept new clients. The command interpreter, or shell, is likely t¢ provide each newly-created
process with a link to the switchboard, from which 1t can obtain links to whatever other servers it may
need.

To find, for example, a line-printer spooler, client C would send a message to the switchboard:
connect find_server ("lp_spooler" | spooler link) on switchboard link:

Upon receiving this request, the switchboard would scan its registry for a server that has advertised the
name ‘‘lp_spooler.”’ Assuming such a server exists, the switchboard would create a new link, pass one end
on to the server in a newclient message, and return the other end to the client

entry find_server (server name : string) : link;
var server, rtn : link;
began

server := lookup (server_ name);
if server = nolink then reply (nolink):;
else connect newclient (newlink (rtn) |) on server; reply (rtn);
end;
end find_server;

Newlink returns one link end as its function retum value (which here becomes a parameter to the newclient

operation) and the other through a reference parameter. Each server that wishes to accept new clients must
provide the switchboard with a link over which it is willing to accept newclient requests.




entry transfer (infc : data);
regin

reg'y:

consume (info)

end transfer;

beg:ir ~- cconsumer
b.nd producer tc transfer:
1%

end ccnsumer.

Here we have provided a begin ... end block for the transfer entry procedure, instead of declaring it
remote. Each connect to transfer will create a new thread of control in this version of the consumer. As
with an accept block. the reply statement of the entry causes the run-time support package to unblock the
thread of conuol an the producer) that requested the current operation. The replving thread continues to
exist until 1t runs off the end of its entry. The producer shown above can be used with either version of the
consumer. without modification.

The bind statement serves 1o create an association between links and entry procedures:
tirz bLnk Lst vz entry list

Only those operations provided by accept statements and bindings o entries can be requested by the pro-
cess at the far end of a link. Connect statements that request a non-existent operation will cause an Ada-
like exception in the requesting thread of control.

Bindings can be broken as well as made:
unbind link_list from entry list ;

The ability to manipulate bindings at run time is a powerful mechanism for access control. Each process
has complete control over which of its communication partners can invoke which operations at which
points in time. Reference [20] contains a Lynx solution to the classic reader/writers problem. This solution
permits a chent to obtain read and/or write access to a resource and perform an arbitrary sequence of
operations before relinquishing that access. The sequence of operations need not be known at the time that
access is obtained; a client can, for example, obtain read access, read an index, and read a location calcu-
lated from that index in one protecied session. A similar solution in Ada [28] requires a complicated sys-
tem of unforgable keys, implemented in user code.

It is the ability of a server to refer to links by name that permits it to implement access control. A
server can, if desired, consider clients as a group by gathering their links together in a set and by binding
them to the same entries. It is never farced, however, to accept a request from an arbitrary source that hap-
pens to know its address. Of course, a server has no way of knowing which process is attached to the far
end of a link, and it has no way of knowing when that far end moves, but this is in keeping with the concept
of process autonomy. A link to a client represents an abstraction (a connection over which to provide a
service) every bit as much as a link to a server represents a connection over which a service is provided. In
fact, it is entirely possible for two processes to act as servers for each other, with a single link between
them. A file server, for example, might use a link to a sort utility in order to maintain indices. The sort
utility for its part might use the file server as a place to store large data sets.
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Symmetric. two-direcuonal links strike a compromise between absolute protection on the one hand
and simpliciy and flexibility on the other. Theyv provide a process with complete run-time control over its
connections to the rest of the world. but limit its knowledge about the world 1o what it hears in messages.
A process can confound its peers by restricting the types of requests it is willing to accept, but the conse-
quences are far from catastrophic. Exceptions are the most serious result, and exceptions can be caught.

Even an uncaught exception kills only the thread that ignores it.*

3.3. Type Checking

To a large extent. links are an exercise in delayed decision making. Since the links in communica-
tion statements are variables, requests are not bound to communication paths until the moment they are
sent. Since the far end of a link can be moved, requests are not bound to receiving processes until the
moment they are received. Since the set of valid operations depends on outstanding bindings and accepts,
requcsts are not bound 1o receiving threads of control until afler they have been examined by the receiving
process. Only afler a thread has been chosen can a request be bound to the types it must contain. Checks
must be performed on a message-by-message basis.

Run-time tvpe checking provides three disunct advantages:
(1) A process can hold a large number of links without knowing what types of messages they may even-
tually carry. A name server, for example, can keep a link to each registered process, even though

many such processes will have been created long after the name server was compiled and placed in
operaton.

(2) A process can use the same link for different types of messages at different tmes, or even at the
same time. It need not declare a conservative superset of those types at compile ume, nor ever worry
about receiving a message of a currently-inappropriate type at run time.

(3} With an appropriate choice of semantics for type equivalence, the compiler can be designed to work
without a global database of types. The language implementor is relieved of the burden of distrib-
uted database management and of the probiem of upward compatible changes.

Type checking in Lynx is based on structural equivalence. Two types are considered the same if
they contain the same internal structure — the same set of primitive types composed with same higher-
level type constructors. The compiler can provide the run-time system with a ‘‘canonical’’ representation
of each type, so that type checking becomes a simple comparison for equality of canonical forms.

Since canonical forms can be of arbitrary length, run-time comparisons are potentially costly. To
minimize this cost, the Lynx compiler uses a hash function to compress its type descriptions into 32-bit
codes {22]. Hashing reduces the cost of type checking to less than 10 microseconds per remote operation.
It introduces the possibility of undetected type clashes, but at a probability of less than one chance in a bil-
lion with a good hash function.

A second potential problem with run-time checking is that programming errors that would have been
caught at compile time in other languages may not be noticed until run time in Lynx. This cost, 00, is

* Adminedly, a malicious process can serve requests and provide erroneous results. No language can prevent it
from doing so.




14

small, and easily jusuned by the type svstem’s simphicity and flexibility. As a practical matter, we tend to
rely on shared declarauon files 1o ensure that run-ume clashes are rare. We catch most type errors at com-
pile umic and the rest at run ume. much more easily than we could caich all of them at compile time.

A final cost of the Lynx approach 1o types is the somewhat liberal checking implied by structural
equivalence. Vanables with the same arrangement of components will be accepted as compatible even if
the abstract meanings of those components are unrelated. Lynx shares this form of checking with many
other languages. including Algol-68, Smalltalk, Emerald,'and many dialects of Pascal. We are happy with
structural equivalence. No type system, no matter how exacting, can ensure that messages are mean'mgfﬁl.
Type checking can be expected to reduce the likelithood of data misinterpretation, not to eliminate it.

3.4. Using Multiple Threads

Though the implicit-receipt version of our consumer process will contain a thread for every invoca-
tion of the transfer operauon, it is likely that only one such thread will exist at a time. For a slighiy more
complicated example, consider the buffer process mentioned above. Interposed between a producer and
consumer, the buffer serves 1o smooth out fluctuations in their relative rates of speed.

rrocess buffer (consumer, producer : lirk);

const si1ze = whatever;

type data = whatever;

var

buf : array [l..size] of daza:

firstfree, lastfree : [(l..size]);

entry transfer (infc : data);

rez:icn
awa.t frrstfree <> laszfree: -- nct £ull
uf(firstfree] := info;
firstfree := firstfree % size + 1;
reply;

end transfer;

var inf> : data;
begin
firstfree := 1;
lastfree := size;
bind producer to transfer;
loop
awalt lastfree % size + 1 <> firstfree; -- not empty
lastfree := lastfree % size + 1;
info := buf([lastfree];
connect transfer (info |) on consumer;
end;
end buffer.

Every Lynx process begins with a single thread of control, executing the process’'s main begin ... end
block. New threads are created in response to inco.ning requests on links bound to entries, and may also be
created explicitly by ‘‘calling’’ an entry locally.




The threads of conwrol within a single process do not execule n parallel, each process continues 1o
execute a single thread until 1t blocks. The process then takes up some other thread where it last left off. 1f
no thread 1s runnable, then the process waits for completed communicaton to change that situation.

Threads may block (1) for communication (connect, accept, reply), (2) for completion of nested
threads (when leaving a shared scope), (3) for a reply from a locally-created thread, and (4) for an expli-
cithy await-ed condition. In the bounded buffer example, the await statement blocks the current thread until
the bufter is non-empty or non-full. as appropnate. There.is no need to worry about simultaneous access 10
buf, firstfree, or lastfree, because the coroutine-style semantics guarantee that only one thread can execuie
ataume.

Of course, the mutual exclusion of threads in Lynx prevents race conditions only between context
switches. In effect. Lynx code consists of a series of critical sections, separated by blocking statements.
Since context switches can occur inside subroutines, it may not be immediately obvious where those block-
ing statements are, but the compiler can help by identifving them in listings. Experience to dale has not
uncovered a serious need for inter-thread synchronization across blocking staiements. For those cases that
do arisc. a simple Boolcan variable in an awail statement performs the work of a semaphore.

The syntax of Lynx allows entries to be declared at any level of lexical nesting. Non-global data
may therefore be shared by more than one thread of control. The run-time data structures required to
implement this sharing are discussed in the box on page 16. In the file server example in the following sec-
tion, there will be one thread of control for every open file. Additional, nested threads will be used to
implement file-specific operations.

A link end may be bound to more than one entry. The bindings need not be created at the same time.
A bound end can even be used in subsequent accept statements. These provisions make it possible for
separate threads to carry on independent conversations on the same link at more or less the same time. The
startprocess statement, for example, might be implemented by sending a request 10 a process manager writ-
ten in Lynx. Each such request might create a new thread of control within that manager. Separate threads
could share the same link between the process manager and file server. Their requests to open and read
executable files would interleave transparendy.

When all of a process’s threads are blocked, run-time support routines attempt to receive a message
on any of the links for which there are outstanding accepts or bindings, or on which replies are expected for
outstanding connects. Incoming replies can only have been sent in response to an outgoing request. Each
such reply can therefore be delivered to an appropriate thread of control. Incoming replies, by contrast, can
be unexpected or unwanted. The operation name of a request is compared against those of the outstanding
accepts and bindings for its link. If a match is found, then an appropriate thread can be made ready and
execution can continue. If there are no accepts or bindings, then consideration of the message is post-
poned. If accepts or bindings exist, but none of them match the request, then the message is discarded and
an exception is raised in the thread that executed the connect statement at the other end of the link.

3.5. A File Server Example

A more realistic example of the use of threads and links can be seen in figure 1. This figure contains
a simplified version of the code for a file server process under Charlotte. The original Charlotte file server
was written in a dialect of Modula, using sequential features only, and relying on library calls for
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Cactus Stacks

A cactus stack 1s acwally a collection of stacks,
prefixes of which may be shared. The most common use of
cactus stacks 1s to manage space for nested coroutines.
Although the exact origin of the concept is obscure, it dates o
at least the middle 1960's, when it appeared in the $ RS
architectures of the Burroughs B6500 and B7500 computers.

In the filc server example of figure 1, consider what
must happen when two different files are open and one of the
threads thut manage those files contains nested threads itself. 01 02
Both of the threads executing the open entry procedure will
have access to global variables. They will, of course, have
access to their own local variables as well. Now if one of
those threads (call it ‘O2’) is managing a file that is open for G
both reading and writing (with random access), it will be
possible for incoming sream and readseck requests (o create
concurrent threads inside the context of O2 (concurrent in the
sense thut they exist and occupy space simultaneously), These
threads will need to share access 10 O2’s local variables.

In the illustration, each segment of the cactus stack represents a subroutine or entry activation. Each
branching point corresponds to the creation of a nested thread of control. There is therefore one thread per
leaf of the structure, and one thread for every intemal segment (other than the root) that lies at the top of a
trunk. From the point of view of any one thread, the path back down to the root looks like a normal stack.

Lynx ensures that no thread can leave a scope in which nested threads or bindings are still active,
This rule ensures that segments never *‘‘disappear’” out of the middie of the structure. In our file server
example, a thread executing the open entry for a write-only file will finish its work almost immediately.
When 1t reaches the end of its scope, however, it will be suspended automatically unti! there is no further
possibility of creating threads in the writeseek, stream, and readseek entries. This will occur only when the
client closes its file by destroying the link that represents it.

Each trunk of a cactus stack can be placed in a single, contiguous array, allocated when its thread is
created. Allernatively, each individual segment (frame) can be allocated dynamically. The Lynx compiler
adopts the latter approach in order to economize on space, in the expectation that programs may contain
very large numbers of threads. A caching strategy for frames makes allocation relatively inexpensive, but
further optimization is still desirable. As it parses its input files, the Lynx compiler keeps track of which
subroutines contain statements that may cause a thread switch. Space for such routines must be allocated
in the cactus stack, since returns need not occur in LIFO order. For routines that cannot cause a thread
switch, however, space may be allocated on an ordinary stack. In practice most subroutines (and
particutarly those that are frequently called) can be seen to be sequential. The coroutine-like semantics of
threads in Lynx allow these routines to be implemented at precisely the same cost as in conventional
sequential languages.

communication. It consisted of just under 1000 lines of code, and was written and rewritten several times
over the course of a two-year period. It was a constant source of trouble. The Lynx fileserver is just over
300 lines, and was written in only two weeks. It would have required even less time if it had not been
undertaken concurrently with debugging of the language implementation.
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rocess f.leserver (switchbocard : lzink);

string = whatever: bytes = whatever;

v open (friename : string; readflag, writeflag, seekflag : Boolean)

frlelnn lirnK; TeaZpir, wIrlteptr : 1lnteger;

rTicn seexinc;

prccedure put (data bytes; f:lename sString; writeptr integer) ;

external

get (filename : string; readptr : integer) : bytes;
aveillakle (firlename : string) : Boolean; external;

(newgtr : integer);

put (data, filename, writeptr); writeptr +:= 1; reply;

end strear;

o

ntry readseek (newptr : 1lnteJer);
begzin
readptr := newptr; announce seeking; reply;

end readseer;

n  -- open

1f available (filename) then
reply (newlink (filelnk)); -- release client

readptr := 0; writeptr := O;

1f writeflag then
if seekflag then bind filelnk to writeseek: end;
bind filelnk to stream;

end;

if readflag then
if seekflag then bind filelnk to readseek; end;
loop
begin

connect stream (get (filename, readptr) | ) on filelnk;

readptr +:= 1;
when seeking do

~- nothing; try again at new location
when REMOTE DESTROYED do

exit; -- leave loop
end;

external;

link;
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P €enz; -- lccp

4z ernd; ~- 1f readflag

4z e.se¢ -- niw ava..aflie

G4 regly (rnclink); -- release client

4S end;

46 -- control will nct leave ‘open’ until nested entries have died

i -~ -
47 erd cpern:

4€ entry new:zlient (client : lank}):;

4% bec:un

s ind client i newclient, open; rep.y:
Sl end newclient:

£z rezin -- m=:in

s rind switchbzarce tc newcllent

54 erd f.leserver.

Figure 1: Strcam-based file server in Lynx.

The ncwclient convention has been used in this example. We have written the server to take a single
initial argument: a link 10 the switchboard name server. Addiuonal clients are introduced by invocations of
newclient over links from the switchboard or from clients. When a newclient request is received (line 48),
the file server binds that link 10 an entry procedure for each of the services it provides. One of those
entries, for opening files, is shown in this example (lines 3-47).

Open files are represented by links. Within the server, each file link is managed by a separate thread
of control. Ncw threads are created in response to open requests. After verifying that its physical file
exists (line 23). each thread creates a new link (line 24) and returns one end to its client. It then binds the
other end to appropriate sub-entries. Among these sub-entries, context is maintained automatically from
one request to the next. We have adopted the convention that data transfers are initiated by the producer
(with connect) and accept-ed by the consumer. As we have seen, this asymmetry allows the transparent
insertion of an intermediate filier or buffer. When a file is opened for writing the server plays the role of
consumer. When a file is opened for reading the server plays the role of producer.

In additional to a conventional mechanism for raising exceptions in a single thread of control, Lynx
also permits one thread to cause an exception in another. In the file server example, this facility is used to
handle seek requests in a file that is open for reading. Under the normal stream protocol, the file server will
always attempt to transfer a block (with ‘‘connect stream ...’") as soon as the previous block has been
received. In order to read blocks out of order, the client invokes a readseek operation. The thread that pro-
vides this operation uses an announce statement (line 20) to interrupt the thread (line 36) that is trying to
send the wrong block. That thread then retries its connect, using the updated file pointer. Since incoming
requests (and readseek requests in particular) are received only when all threads are blocked, the thread
that provides the readseek operation can be sure that the thread that is streaming data must be stopped at its
connect statement. No race conditions can occur.
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To close an open file, a client need only deswroy the hink that represents the file.® A thread that tries
o use @ dostroved link feels a REMOTE_DESTROYED exception (caught at line 38 in the file server.
Bindings for a destroved hink are broken automatically. These mechanisms suffice in this example w clean
up the context for a file.

3.6. A Distributed Game-Playing Program

Using an implementation of Lynx on the BBN Butterfly multiprocessor, we have created a distrib-
uted program that plays the game of checkers (draughts). Since our principal goal was to evaluate Lynx
and not w invesugate the design of parallel algorithms, we adopted an existing parallelizauon of alpha-beta
search, designed by Jack Fishburn at Wisconsin {11].

The basic idea behind the algorithm can be seen in figure 2. There are three different kinds of
processes. One process (the “‘master’”) manages the user interface (in our case, this is a graphic display
under the X window system). A second process (the ‘'midling’’) manages the parallel evaluation of possi-
ble moves. A third kind of process (the *‘slave’) performs work on behalf of the midling. There is only
onc master and one midling. Performance is maximized when there is one slave for every available pro-

CeSSAT.

Within the midling, one thread of control is dedicated to exploring the first few levels of the game
tree. It conswucts a data structure describing all of its possible moves, all of the possible subsequent moves
by its opponent, all of its possible moves after that, and so forth. At a given depth in the tree (typically four
or tive levels), it enters board positions into a queue of work o be performed by slaves.

Each slave is represented by a separate thread in the midling. That thread repeatedly removes an
entrv from the work queue, sends it to a slave, and waits for the result. When that result comes back it
updates the game tree. performs any necessary pruning (to throw away moves that are now known 1o be
sub-opumal}, and obtains a new entry from the queue. In order to avoid storing all of the top few levels of
the (very large) game tree at once, the thread that creates the data structure blocks when the work queue is
full. Games tree nodes are thus created on demand. Likewise, the threads that dispatch work to slaves will
block when the work queue is empty. Despite the fact that the checkers player is a single, coordinated pro-
gram. the midling bears a strong resemblance to a server. It would have been significantly more difficult to
write the midling with a single thread of control.

One consequence of the communication semantics of Lynx is that a process does not notice incom-
ing messages until all of its threads are blocked. There is no way 1o receive a message asynchronously or
to allow a high-priority message to interrupt the execution of lower-priority ‘‘background’’ computation.
In the checkers program, performance is likely 1o improve if a slave can be interrupted when the midling
discovers that its subtree has been pruned, or perhaps when it discovers new information that will help the
slave do more pruning internally. For cases such as this, Lynx provides a low-cost polling function that
can be used w determine if messages are pending. Slaves execute the statement

3 Destroy is a buill-in procedure that takes a single parameter of type link. Variables accessing either end of a
deswroyed link become dangling references.
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Figure 2: Chcokers program structure.

awalt idie;

at the top of an outer loop. Update messages from the midling are therefore received within a reasonable
amount of time.

We have yet to perform an extensive performance study on the checkers-playing program. Informal
experiments with various problem parameters (number of tree levels in the midling, size of subtrees
evaluated by slaves, frequency of update messages, etc.) have produced approximately 20-fold speedups
with 100 working slaves. The primary limiting factor appears to be that many of the subtrees that are
evaluated in parallzl would have been pruned off and never explored by the standard sequential algorithm.

4. Implementation Experience

An implementation of Lynx for Wisconsin’s Charlotte operating system was completed in 1984. It
was ported to a simpler version of Charlotie in 1987. Charlotte runs on a collection of VAXen connected
by a wken ring [9]. An implementation for the BBN Butterfly multiprocessor was completed in 1986.
Other, paper designs exist for UNIX {using TCP/IP) and for an experimental system known as SODA [14).
In addition to providing a testbed for evaluating Lynx, our implementation experience has led to




uncxpected mnsights into the relationship between a language run-ume package and the underlying operat-
ing svstem {11,201, and also into the factors that contribute 1o message passing overhead (22}

4.1. The Language/kernel Interface

A distributed operating system provides a process abstraction and primitives for communication
between processes. A distributed programming language can regulanze the use of the primitives, making
them both safer and more convenient. The level of abstraction of the primiirves, and therefore the division
of labor between the operating system and the language support routines, has serious ramificauons for
efficiency and flexibility. Lynx 1s one of the few distributed languages that has been implemented on top of
more than onc operaung system.

Simply put, the implementation experience with Lynx 1s that the more primitive the operating system
(within reasony the casier itis to build a language above it. When we set out to implement Lynx we did not
expect to discover this result. Symmetric, two-directional links are directly supporied by Charlotte. The
original motivation for Lynx was to build a language around them. Yet despite the fact that Charlote ker-
nel calls provided links as a fundamental abstracuion, the implemenaton of Lynx was extremely compli-
cated and tme-consuming. Many of the funcuons provided by the kernel were almost, but not quite, whut
the run-ume package needed. For example, Charlotie’s receive functon provided no way 1o say that only
reply messages were wanted (and not requests). A complicated protocol was required in the run-ume
package in order to reject and return unwanted requests. Similarly, the Charlotte send function allows links
to be enclosed in messages, but only onc at a ime. Additional run-time protocol was required 1o packetize
multi-link messages.

By comparison, implementation of Lynx on top of Chrysalis was surprisingly easy, despite the fact
that Chryalsis has no nouon of a link or even of a message. What Chrysalis does provide are low-level
faciliues for creating shared memory blocks and for atomically manipulating flags and queues. The box on
page 22 explains how links can be built from these primitives. The fact that Chrysalis supports shared
memory is a significant but not deciding factor in it suitability for Lynx. Our paper implementation for the
message-based primitives of SODA is equally simple. Our TCP/IP design lies somewhere in the middle.

Like most distributed operating systems, Charlotte was designed with the expectation that program-
mers would invoke its primitives directly. This expectation appears to have been naive, but by no means
unique. The proliferation of remote procedure call stub generators suggests that users of a wide range of
message-passing operating systems have found their primitives too primitive to use. Unfortunately, the
creation of interfaces that are almost usable for day-to-day programming has meant that substantial
amounts of functionality and, consequently, flexibility, have been hidden from the user. Remote procedure
calls may work, but alternative approaches to naming, buffering, synchronization, error recovery, or flow
control are generally not available.

Our experience with Lynx suggests that an operating system kemnel should either be designed to sup-
port a single high-level language (as, for example, in the dedicated implementations of Argus [17],
Linda (7], and SR [1]), or else should provide only the lowest common denominator for things that will be
built upon it. A middle-level interface is likely o be both awkward and slow: awkward because it has
sacrificed the flexibility of the more primitive system; slow because it has sacrificed its simplicity. We
recommend low-level kernels because they can maintain flexibility without introducing costs.




Links Under Chrysalis

The Butterfly implementaton of Lvnx consists of a cross compiler that runs on a host machine and a
run-ime support package that implements hinks in terms of Chrysalis primitives. For compatibility
reasons, and to simphify the implementauon, the compiler generates C for “"intermediate code'. Errors in
the Lynx source inhibit code generauon, so the output. if any, will pass through the C compiler without
complaint. Programmers arc 1n general unaware of the C back end.

On the Buuerfly. every Lynx process allocates a Chrysalis atomic queue when it first begins
exccution, This queue iy used o receive notficauons of messages sent and received on any of the
process’s links. A link 1s represented by a block of shared memory. mapped into the address spaces of the
two connected processes. The shared meniory object contains buffer space for a single request and a single
rephy an ocach direcuon. Since dynamic allocauon and re-mapping of message buffers would be
prohibitively eapensive. messages are limited to a fixed maximum length, currently 2000 bytes. Each
procass kKeeps an mternal list of the threaas that are waiung for bufiers to be emptied or filied.

P> < Q

LA 1] N

request for P request for Q

reply for P reply for Q

In addition 10 message buffers, each link object also contains a set of flag bits and the names of the
atomic queues for the processes at each end of the link. When a process gathers a message into a buffer or
scatiers @ message out of a buffer into local variables, it scts a flag in the link object (atomically) and then
enqueues a nouce of its activity on the atomic queue for the process at the other end of the {ink. When all
of the process’s threads are blocked, it atlempts 1o dequeue a notice from its own atomic queue, waiting if
the queue 1s empty.

The flag bits permit the implementation of link movement. Whenever a process dequeues a notice
from its atomic queue 1t checks to sce that it owns the mentioned link end and that the appropriate flag is
set in the corresponding object. If either check fails, the notice is discarded. Every change to a flag is
eventually reflected by a notice on the appropriate atomic queue, but not every queue notice reflects a
change 10 a flag. A link is moved by passing the (address-space-independent) name of its memory object
in a message. When the message is received, the sending process removes the memory object from its
address space. The receiving process maps the object into its address space, changes the information in the
object to name its own atomic queue, and then inspects the flags. It enqueues notices on its own queue fo;
any of the flags that are set.
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4.2. The Cost of Message-Passing

In our Buttertly implementauon of Lvnx. the simplest remote operations complete 1n fess than two
miliiseconds. To place this igure i perspecuve, a call to an empty procedure takes 10 microseconds on an
mdividuct Buttertly node. An atomic test-and-set operation on remote memory takes 35 pis. An atomic
enqueue or dequeue operauon takes 80 ps. In the following table. nullop 1s a trivial remote operation with
no parameters. Bigop s the same as nullop, but includes 1000 bytes of parameters in each direction.

Explicit receipt uses an accept statement; imphicit receipt uses a binding 1o an entry.
t o .

Exphcit recerpt: Imphicit receipt:
process nodes process nodes
difterent samg¢ different same
nuliop psitmy 25 yms 204 ms 2.76ms
bigon 345ms «21lms 372ms 442ms

Inter-noie enerauons finish more quickly than 17 -a-node operatons because the two processors can over-
lap tieir computations. Implicit receipt costs more than explicit receipt because of the need 10 create and
destroy a thread. We have reason to believe that these umes could be reduced by additional tuning, but it
seems unlikely thut the Jowest igure wonld drop below a millisecond and a half. A remote invocation is
thus two orders of magnitude more expensive than a local procedure call, a result that is consistent with
most other well-tuned message-passing systems.

21¢ - actual communicaiion
Cicaring and setung flag bits, posting notices on queues, calculating
tocations of message buffers.

22¢% - thread management

Thrcad queue management, queue searching (dispatcher), context
switches, cactus stack frame allocation, buffer acquisition.

11% - bookkeeping
Keeping track of which threads want which sorts of services and which
threads are willing to provide them.

18% - checking and excepton handling
Venfying link validity, verifying success of kemel calls, typ. checking,
establishment of Lynx exception handlers, initializauon of stack frame
excepuon information.

6% — protocol option testing

Checking for link movement, asynchronous notifications, premature
requests, optional acknowlzedgments.

22% - miscellaneous overhead
Timing loop overhead, dispatcher loop and case statement overhead,
procedure-call linkage, caching of constants in registers.

Figure 3: Coutributor. to Message-Passing Overhead (in percent of total work performed)




Line niur roscarchersowe tound the cost of message passing to be both frustraung and puszhing
Notonly dic we wih dat things worked faster, we also didn’t undersiand why they worked at the speed
they Sid Inorder to obuain a beuter explanauon of “*where the ume goes.” we profiled benchmurk pro-
prams at the instrucuon fevel and assigned each individual instrucuon to one of 23 different funcuonal
cateporics The results of this profiling are summarized in figure 3. A timeline for a 2.0 ms remotc opera-
uon appedrs i tipure <. The umeline indicates the amount of ume devoted o each of the phases of a
remote invocanon, but provides relauvely hule mnsight into the expense of individual language features
mvolved in messag passiny.

rovedure call overhead and tlag bit manipulation are the only single 1tems in the profiling table that
account for more than 10 of the total communication overhead. Small savings could undoubtedly be
realizad here and theres but there does not seem to be any way 1o achieve significant performance gains
without chnanating language teatures . Work by other researchers tends to contirm the hypothesis that daw
tansnussien tmes do not dominate the cost of practical message-passing systems [8.14,17,23] High-
level semantic tunctions such as addressing, dispatching. bookkeeping, testing. and error handhnyg are at
least as sigrunicant and otten more so. One millisecond appears to be a nearly universal lower bound on
round-trp communicauon umes with mid-1980s microprocessor-based architectures, suggesung that it
man beommpossbic o provide attractive message-passing semantcs an significantdy fewer than 1000

INSUuClions.

8. Conclusion

Numerous programs have been written in Lynx over the course of the past four ycars, both as
rescarch projects and as coursework [6,9]. In comparison to sequential programs that perform communi-
cation through hbrany routines, Lyna programs are consistently shorter, easier to debug, casier 10 write, and
casier Lo read. Much of the explanation is simply the difference between a language and the lack thereof;
Adi. Argus, Linda, NIL, and SR can make similar claims. With a few exceptions, all these languages pro-
vide attracuve svntax, secure type checking, error handling with exceptions, and automatic management of

context for muiuple conversauons,
Bevond these facilities, however, Lynx provides an unusual degree of run-time flexibility.

] Symmetric communication links provide abstraction and transparent reconfiguration without the res-
trictions of compile-time type checking.

. The abihity to disinguish between clients provides access control and protection.

. Mutually-exclusive threads provide context for multiple conversations without the complexity of

synchronizing access to memory. The integration of threads with communication combines the con-
ceptual clarnty of remote procedure calls with the performance of non-blocking messages.

Each of these advantages can be of use in single-program applications. Even more important, they extend
the advantages of language support to autonomous but interacting programs.
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